If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+18t-5=0
a = -16; b = 18; c = -5;
Δ = b2-4ac
Δ = 182-4·(-16)·(-5)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2}{2*-16}=\frac{-20}{-32} =5/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2}{2*-16}=\frac{-16}{-32} =1/2 $
| 7x+31=2x-19 | | x/12+4=64 | | 12-5h=-h+8 | | -3t-27=4t-6 | | 8d-25=3d-30 | | 13x-16=32+5x | | -7v+3(v-7)=-13 | | 1=2x+7(x-5) | | 6x-14=-5x-13 | | 25x=40. | | 4x-53+7x-22=0 | | X+12=2x-13 | | (x-3)^((4)/(3))=625 | | 2x/5-2/3=x/2+6/5 | | 5x/13+5/26=1 | | 6x-1+97=180 | | 64-5x=29 | | 61+.2x=75+.5x | | 10x^2+6x=5 | | 3*(42-x)+4*x=154 | | -3b=0.5b | | 9=8x+16 | | 3u+5=29-u | | (10x-13)=(x+6) | | X2+14x-527=0 | | X2+16x-225=0 | | X2+4x-168=0 | | 16x-8=-3 | | 3p+2=7p | | (8x-12)=(6x+7) | | 5x(4x+9)=0 | | 7-5x=-2x-5 |